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Electrostatic-inertial plasma confinement consists of trapping charged particles in poten-
tial wells of the electric field, which are created by ions or electrons injected radially in-
wards into a hollow sphere or cylinder. Theoretical expressions are derived for the poten-
tial and particle densities as functions of radius, grid voltage, and current. A neon plasma
is produced in cylindrical geometry, using a grid 4 cm in diameter and 16 cm long. Using
the laser heterodyne technique at 0.6401 and 0. 6328 g, the density of neon atoms in the 1sg
metastable state is measured (10°—10!2 cm=3) as a function of radial position, time, grid
current (20 —usec pulses of up to 4 A), grid voltage (0.2 — 3.0 kV), gas pressure (0.001 —
0.01 Torr), and grid mesh spacing, and compared with theoretical predictions. The peak
electron density is 101! cm=?, When the spacing between grid wires is larger than 1 mm, a
decrease in metastable density, attributed to the presence of a plasma sheath around the
grid wires, is observed. The radial variation of plasma light intensity is compared with

the theoretical radial distribution of electron density.

I. INTRODUCTION

This work is directed towards an answer to the ques-
tion: “How dense a plasma can be confined by electro-
static-inertial means ?” Electrostatic-inertial plasma
confinement consists of trapping charged particles in
potential wells of the electric field, which are produced
by ions or electrons injected radially inwards into a
hollow sphere or cylinder.'™ Interest in this method
was stimulated by experimental results of Hirsch® in
which neutron yields of about 10*° sec™ were observed,
apparently from D-T reactions in an electrostatically
confined plasma.

Simplified calculations, assuming monoenergetic parti- k

cles with zero angular momentum, indicate a spatially
oscillatory potential with trapping of both ions and elec-
trons in their respective wells.? Such a potential con-
figuration might be the basis for high-density plasma
confinement if it could be produced in practice. An ap-
proximate solution by Lavrent’yev including effects of
energy spread and angular momentum in spherical ge-
ometry indicated only one potential well with a broad
flat bottom. 2 In this paper the theory is further devel-
oped for comparison with the present experimental re-
sults.

In practice, a highly open wire mesh grid in the form
of a sphere or cylinder is biased at a high negative (or
positive) voltage to accelerate ions {(or electrons) radi-
ally inwards. Since the grid mesh is highly open, most
of the accelerated particles pass through the grid sev-
eral times, oscillating in and out, before being inter-
cepted by it. These particles are “injected” into the
region inside the grid where they can produce ioniza-
tions in the neutral gas. The space charge of the in-
jected particles produces a potential well which traps
charged particles of the opposite sign, as indicated in
Fig. 1 where 7, =grid radius. For certain cases of the
particle energy distributions, it might be possible to
produce a second potential well of opposite polarity in-
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side the first well (a spatially oscillatory potential), so
that both ions and electrons could be trapped in different
potential wells, isolated from contact with the grid.

The particle energy distribution functions depend upon
many complex factors, including ionization, charge ex-
change, interparticle collisions, particle deflections at
the grid, particle loss to the grid, particle emission
from the grid, recombination of ions and electrons, and
loss of particles which are too energetic to be trapped.
The present work attempts to find solutions of Poisson’s
equation in spherical and cylindrical geometries for as-
sumed distribution functions of total energy and angular
momentum. From the potential solutions the radial
variations of electron density and ion density are ob-
tained.

The main diagnostic method used was to measure the
spatial distribution of neon 1s; metastable atoms in a
neon plasma and compare the measured values with
those predicted using the theoretical electron density
distributions. The other diagnostic technique employed
was measurement of the intensity of the light emitted

by the plasma as a function of radius, using a collimated
phototube. The light observed is mainly excited light
from atomic states with short lifetimes, so that its
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FIG. 1. Potential vs radius.
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FIG. 2. Dimensionless current vs grid voltage for Ne* ion
injection, assuming y;=0, y,=1, ;=1 A, 7,=2 cm, and =
15 cm.

radial distribution should have the same shape as the
theoretical electron density distribution. Although the
experimental work was done using neon and deuterium,
the results should be applicable to other gases as well,
since the solutions of Poisson’s equation are applicable
to ions of any mass.

II. POTENTIAL DISTRIBUTION

The potential as a function of radius will be found for
spherical and cylindrical geometries, assuming sym-
metry in other spatial variables, and ignoring effects of
collisions and reactions, such as ionization. The method
of Lavrent’yev® is followed, whereby Poission’s equa-
tion is solved together with the equations of motion for
the ions and electrons.

In the following analysis, the subscripts 1 and 2 will re-
fer to the injected and trapped particles, respectively.
(For the case where ions are being injected through the
grid, the subscript 1 refers to ions, and the subscript

2 to electrons. ) The subscript g will refer to the grid,
and the subscripts v and ¢ will refer to radial and an-
gular components of velocity.

A charged particle in the system under consideration
has two constants of motion: its total energy (defined as
the sum of its kinetic and potential energies) and its an-
gular momentum (which is conserved, since the forces
act only radially in this model). The nonrelativistic con-
servation equations are

tmw?, +im i, +q,U(r) =g W, = const,
m,¥v,, =L, =const,
3MV%, +imywi, +q,U(r) =q,W,= const, S
My, =L, = const,
where m =mass (kg), g =charge (C), U=potential (V),

W =total energy (V), L =angular momentum (kgm?sec™),
v =velocity (m sec™), and »=radius (m).
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The radial velocities are found to be
Vg = (-ZQ1Ug/m1)1/2 [y(x) -V - Ef/xz]”z
(g, and U, have the opposite sign), (2)
Uy = (2qug/m2) 1z [3’2 ~y(x) - Eg/xz]l/z,
where x=7/7,; y=U/Ug; 9,,,=W,,,/U, is the dimension-
less total energy; &,=[L3/2m,73(~q,U,)"/? is the

dimensionless angular momentum; and
E,=(LZ/2m,riq,U,)/ 2.

A typical potential distribution is sketched in Fig. 1. In
order to stay in the system a significant amount of time,
a particle’s total energy y,,, must be between 0 and 1.
In order to avoid negative arguments of the square roots
in Eq. (2), it is required that y, <y <y,. Therefore,

0<y, sy(x) sy, <1, (3)

The possible values of angular momentum £ which a
particle can have at a given radius x lie between zero
and £_,,, which is found by setting v, =0:

O < ‘El < slmu:x(y _yl)! /2’

(4)

0 <&, SEZmaxzx(yz —-y)/e,

Equations (3) and (4) describe the limiting values of
total energy and angular momentum which a particle can
have at a given radius. These values will be the limits
of integration in relating the particle densities at a given
radius to the distribution functions.

The distribution of particles will be described in terms
of the constants of motion, £, ,and y, ;. Let N, be the
total number of injected particles inside the system,
bounded by some radius 7,, and let g,(£,, v,)dt,dy, be
the number of injected particles anywhere in the system
having angular momentum and total energy in d£, and
dy, at £, y,. Then,

Nl:fo dy, j;;ﬂdslgl(gu ¥, (5)
1.0
8 A=2
6
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FIG. 3. Potential vs radius, spherical geometry. y;=0,
96=0.5, y7=0, y3=1, p}=p3=0.5, and ;=100
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FIG. 4. Potential vs radius, cylindrical geometry. y;=0,
96=0.5, 3;=0, y5=1, pi=p=0.5, and k,;=100.
where g, will be zero for impossible values of £, y,.

Consider a thin spherical shell with volume 4n»dr.
Some of the injected particles may oscillate in and out
with a period of oscillation given by

T,=2 frr‘”“ av/v,(7), (6)
min

where 7y, and 7,,, are found from the equations of mo-

tion. The fraction of time that a particle is present in

the shell is
dt _ 2dr
Ty U,Ty

ulr - ’rmln) u(’rmax - ’}’), ’ M

where #( ) is the unit step function

40, x<0
u(x):{l’ x>0.

The factor 2 represents the fact that a particle passes
through the shell twice during each full period of oscil-
lation. The differential density of injected particles in
the shell is therefore

A7, &, yidEdy,

_leey, ) de dv ]2 drulr —vyyg) wlrge, = 1)/v,, 7]
- 4nvidr
(8)

where g,(¢,, y,)dt, dy, is the number of injected parti-
cles with momenta and energies in d&, and dy, at &, y,;
2 dy uly = v u(ray — ¥)/0,,7, is the fraction of time that
each particle spends in the shell; and 47#2dr is the vol-
ume of the shell.

The injected particle density is
n(r)= fo dy, fow d£1f1(51; ¥ (9)

A simple check for consistency of the above definitions
can be made by noting that the integral of the injected
particle density, »,, over the volume 0 -7, is equal to
N,.

The step functions in Eq. (8) represent the restrictions
of the equations of motion upon the particles which may
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be present at a given radius. They may be replaced by
conditions (3) and (4), which express the same restric-
tions in terms of £, and y,.

Combining Egs. (2), (8), and (9), and using conditions
(3) and (4) on the limits of integration, the density of in-
jected particles is found to be

y
"1("') =/ dy,
()
¢

x lmaxd£ 42g1(§u yl)
b Y arrT (- 29,0, /m ) 3 (y -y, - /22
(10)

Since the period 7, is a complicated function of the un-
known potential y(x), it is desirable to avoid calculating
7, during solution of Poisson’s equation. Therefore, a
current distribution function { will be defined by

(&, ¥)dE dy,=2q, g,(&,, ¥,)dEdy, /T, (A). (11)

This function represents the inward and outward flow of
charges with energies and momenta in dy,; and d¢, at &,
¥, per unit time. The total two-way charge flow, or
“circulating current” I, of injected particles at the grid
(x=1) is found by summing over all energies and angu-
lar momenta:

) (19?2 ‘
I,= fo dy, fo de, 14,(&,, ). (12)

This circulating current is related to the measured grid
current I by*

L/I=2¢/(1 —€?),

where ¢ is the effective openness of the grid < (open
area of grid)/(total area of grid).

(13)

Combining Eqs. (10) and (11), the density of injected
particles is
¥y

n{x) = f dy,

max i€, 9)
i</; % 47”’5’(2‘11(— 2q1Ug/m1)1}W‘ Y- Ei/xz)zlz)
1
I
10
L
oL "'

DENSITIES (cm™3)—»

X —»
FIG. 5. Cylindrical geometry, density vs radius. y;=0, yg;=-

0.5, 9;=0, y3=1, k=100, A=0.5, pi=p§=0.5, Ne" ion injec-
tion at 1000 V, 7,=2 cm, and I; =1.44 A,
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FIG. 6. Density vs current, spherical geometry. y;=0, y;=
0.5, y;=0, y5=1, A=0.5, pi=p5=0.5, deuterium ion injection
at U,=10° v, and r,=2 cm.

Similarly, the density of the trapped particles is found
by making the following permutations: subscript 1 —~2;
¥ =y)—= (¥, ~9); [y = [} and ~q,~q,.

Using Eq. (14) with definitions from (2), Poisson’s
equation becomes

L (x%y) = Qulx, ) - 2uls, V), (15)
where y’ =dy/dx,
l].max h (E y Y )
o 9= dylf =y, - /T
Ry, ¥)= W <'—ZJ‘(—£J"—‘Ly)>

and @, and A, are found from @, and %, by means of the
above permutations. The boundary conditions are y’(0)
=0 and ¥(1)=1. Equation (15) is equivalent to one de-
rived by Lavrent’yev.?

For cylindrical geometry, a similar result is obtained:
d
L‘i;(xy'):Rl(x: y) _Rz(xy y),

(16)
2
R1,2(x’ y) :—;‘ng,z(x’ y):

where [ =length of cylindrical plasma (m) and the
boundary conditions are the same.

The partical densities are found to be

(spherical) ny,,(x)=-% l & (X, y)

1:2

(17)

R: A%, ) .

(cylindrical) n,, ,(x) = po

q1z

The potential variation can now be found for arbitrary

distribution functions of the particles. Rectangular dis-
tribution functions appear to be reasonable approxima-
tions to the apparent steady-state distributions found by
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Barnes® and Dunn, ® and they permit immediate integra-
tion over y, , and £, ,. The rectangular distributions
represent uniform spread of angular momenta between
zero and some maximum value p,, p, and uniform total
energies from y, to y; and y, to y,:

—yl) u(pl_gl)’
—yz)u(pz_ 52)9 (18)
0=<p, =1, 0xp,=1),

where k, and k, are dimensionless constants which are
related to the currents of injected and trapped particles.
From Eq. (12), with the definition of k, from (15), we
have

1 (1mp )2/ 2
fo dy, L e dt, h1(£1, yl)
=(mi/?/dne,| 29,1 /21 U,13/2) 1,, (19)

hy(E1, 91) =Ryady, — y5) uly,
hol&s yz)zkzu(yz

(0 =35 =yg =1,

=) uly,
0 <y, =y, =1,

Evaluating the same integral using Eq. (18) and solving
for &, yields

”1;;/ 2

41reol2q11”2! U,13/2

g

{
b §

where
Cl.:plu(l ‘pi "ys)[min(ye; l—Pi) —ys]
+3ulys -1 +pI[1-max(y;, 1 -p?) /2 - (1~ y*/ %

min and max denote functions which select the smallest
and largest of their arguments.

Equations (20) and (13) relate the constant &, to the ex-
perimentally measured grid current and voltage. The
constant k2, cannot be so easily defined, because the lim-
its of integration for ¢, would depend upon the shape of
the potential distribution. Figure 2 shows the value of

k, for Ne* ion injection assuming I,=1 A. (Neon ions

{
10

n (cmo)—

1

I (amp) —»

FIG. 7. Axial density vs current, cylindrical geometry. Ne*
ion injection at 1000 V, 7,=2 cm, y;=0, y3=0.5, y;,=0, y3=1,
A=0.5, and p}=p3=0.5.
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FIG. 8. Laser heterodyne system. M—mirror, P—mirror
mounted in piezoelectric crystal, B—beam splitter, D—optical
detector, and L—Ilength of laser cavity containing plasma.

were used in the experiment.) Let

A=ky/k,.

In the present work, various values of A will be as-
sumed, and the resultant potential distributions found.

(21)

Using Eqs. (18) and (15) and integrating over angular
momentum and total energy, the terms on the right-
hand side of Poisson’s equation are found to be

2

Qilx, ¥)=Fkyxuly ~ y;) {12,' “(ys -y- f—i“)

2 2 2
x[min(y, ys) _maXéls, y —%') ] +§2Lu (y —fé- —ys)
x(si“'lzh _siny,  (1-3)77 (1 -4’9”2)

v ¥ ¥ b ’

Qux, ¥)=rkyxul(ys ~ ¥) {-275 u (y +£x§ - y7) (22)

2 2 2
X[min ‘(ye,y +£x-%) —maX(y,y7)] +5 u(ya -y --’-;%)

sinly,  siny, | (1-gdVE(1-g2)Y/e }
(% A % )

where
b, = py/dy =y)M%, ¥y =p,{x[y-min(y,, ¥ - p3/x3]/2},
by =D/5(95 = IV2, B,=p,{x[max(y,, y +p2/x%) - y]'/ 3}

[For the special case of zero angular momentum and in-
finitesimally narrow energy spreads, the Poisson equa-
tion can be reduced down to a simpler form by setting
y5=0, y,=1, taking the limit as y5—~ 95, ¥, ~¥s, #,—~0,
P, —0, and using the definition of the derivative in the
form

lim ([(y) —fly -E)) _dr). (23)
t-0 19 dy
Poisson’s equation then reduces to
i " — =1/ =1/
ey ) =Kly™/? - (1 - )77, (24)

where
K=m}/21/4me,12q,1Y 21U, 13/2, x=m}/2L,/m}/?1,.

Equation (24) is the equation solved by Hirsch,*® yield-
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ing a spatially oscillatory potential. ]

Using the rectangular distribution functions, the
Poisson equations (15) and (16) with Q,,» from Eq. (22)
have been solved numerically using the shooting method
with a fourth-order Runge-Kutta approximation.” The
integration step sizes used were 0.001—-0.01, with ini-
tial steps of 107°—10™, The effect of varying X is shown
in Figs. 3 and 4. Note the relatively flat bottom of the
potential well. An increase in current (%,) results in an
increase of potential well depth. These curves are sim-
ilar to the curve predicted by Lavrent’ yev? and to those
observed in computer simulations of plasma by Barnes.?

The relative electron and ion densities as a function of
radius corresponding to the above potential distributions
are shown in Fig. 5.

For high currents, the densities are equal at x=0. The
theoretical plasma density, given in Figs. 6 and 7, is
approximately linear with current, except at low cur-
rents.

By varying the angular momentum spread p, of the in-
jected particles, assuming p,=p,, it is found that the
plasma density near the center varies roughly as p;’,

in agreement with the predictions of Lavrent’yev.? This
variation with angular momentum spread indicates the
importance of good focusing for the confinement of high-
density plasma,

In an attempt to explain the results of the Hirsch? ex-
periments, the energy spread of the injected particles
and the angular momentum spreads were made very
narrow, to simulate the well-focused ion guns used in
those experiments. Using U,=10° V, I=0.06 A, I, =101,
A=0.5, and 7,=5.7 cm, the resultant density at »

=1 mm is less than 10*2 em™, which gives a theoretical
neutron yield much lower than the experimentally ob-
served value. There are several reasons why the pres-

OXIDE CATHODE SHIEL.D

TYPICAL
ELECTRON PATH

ELECTRON
ACCELERATING GRID

VACUUM CHAMBER WALL
(LINED WITH ALUMINUM TUBE)

FIG. 9. Cross-sectional view of electrodes (not to scale).
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TABLE 1. Electrode dimensions.

Length Diameter Remarks
(cm) (em)

Vacuum chamber, base pressure
inside 28 15 about 4 X10~" Torr
Electron accelerating
grid 24 10
Grid 16 4 several different

wire mesh sizes

were used
Oxide cathodes 15 0.16 oxide-coated nickel

tubes, heated and
supported inter-
nally by a 0. 08-cm-
diam tungsten rod

ent theory may be inadequate to explain the experimental
results of Hirsch: The solution of Poisson’s equation
may not be unique, the assumed distribution functions
may be incorrect, and the circulating current distribu-
tion function 7, might be discontinuous across a virtual
electrode.

III. DYAGNOSTICS

The measurements of neon 1s; metastable atom density
were made with a laser heterodyne system operating
at 0.6401 and 0. 6328 u, as shown in Fig. 8. The two
He-Ne laser beams are combined at the beam splitter,
and the beat frequency from the detector output is dis-
played on an oscilloscope. Pulsing the plasma on and
off produces a change in plasma refractivity, which
slightly shifts the operating frequency of the laser con-
taining the plasma. This shift can be measured as a
change in the measured beat frequency, provided that
the time scale of the current pulse is short compared
to the time scale for the drift of the heat frequency due
to other causes, such as mirror vibrations. The mini-
mum frequency shift which can be measured with the
present system is 10 kHz, which corresponds to an av-
erage density of neon 1s, metastable atoms of 1.3 x10°
cm™ over the 15-cm plasma length.

The equations relating the beat frequency shift to the
changes in plasma parameters are given elsewhere, %8
The 0. 64011 laser wavelength is especially sensitive
to the presence of neon 1s; atoms, owing to anomalous
dispersion from the 1s,—2p, transition at 0.6402y.**
From measurements at 0. 6401, 0.6328, and 3.39 p, it
was determined that the changes in ground-state neu-
tral-atom density and electron density remained below
the minimum detectable values for this system, which
were 1.3x10* and 2x10" cm™, respectively.

In addition tothe laser heterodyne measurements, the
total light intensity emitted by the plasma as a function
of radius was measured using a collimated photomulti-
plier tube. The collimator consisted of two 1-mm pin-
holes spaced 14 cm apart, with a baffle to minimize
stray light reflection. The collimator was initially
aligned parallel to the plasma axis by means of an align-
ment laser beam passing through the collimator to the
phototube. Deuterium was used for these measurements
instead of neon. With the plasma present, the light in-
tensity at a given time in the discharge was measured

1595

Bomp FIG. 10, Oscilloscope trace

of current and laser beat
- signal.

T U O S Y O I S

|e——100us ——4‘

during several shots at each radial position, and an
average value taken, These measurements have the ad-
vantage of giving data which may be directly compared
with the theoretical shape of the electron density dis-
tribution, but they do not yield the magnitude of the
electron density, and the error bars are large, be-
cause of the considerable variation from shot to shot.

IV. EXPERIMENTAL DEVICE

Cylindrical geometry was chosen so that the laser beam
could be aligned parallel to the axis of the plasma and
moved radially to measure the radial distribution of
metastable atom density. The electrodes which produced
the plasma are cylinders of highly open wire mesh, ar-
ranged as shown in Fig. 9, with dimensions given in
Table 1.

The purpose of the cathode shields is to prevent the
electrons from concentrating at those regions of the
electron accelerating grid nearest the oxide cathodes,
and to protect the cathodes from ion bombardment.

For Ne* jon injection into the grid, the grid was biased

1]

10
P = 008 TORR NEON
«004 TORR
St
.002 TORR

2 -
«IT 10
e 0
L .O0! TORR

wn

=4

5 |

[ )
2 -
10° | |
(o] I 2 3 4

GRID CURRENT, AMP —

FIG. 11, Metastable density vs current,
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FIG. 12. Metastable density vs current at various applied
voltages. (The true grid voltage is about 1000 V higher, owing
to the electron accelerating grid pulser.)

negatively to a voltage between 0.2 and 5.0 kV, and

the electron accelerating grid was pulsed to a positive
voltage of 0.5—2.0 kV for about 20 psec. Primary
electrons from the oxide cathodes, plus any additional
electrons produced by ionization, oscillate in and out of
the electron accelerating grid during the pulse, ioniz-
ing the neutral neon gas. A typical electron path is
sketched in Fig. 9. Neon ions formed inside the elec-
tron accelerating grid are then accelerated into the in-
terior of the grid, producing the experimental plasma.

For electron injection into the grid, both grids are
pulsed positive, using a voltage divider to apply a high-
er voltage to the center grid.

The plasma pulse is triggered when the laser beat fre-
quency is low (around 10 kHz), and the grid current and
laser beat signal are displayed on an oscilloscope trace,
such as that shown in Fig. 10. In this shot, Ne* ions
were injected into the grid at 0.8-kV grid voltage. [The
grid used here was about 80% open. The time scale is
10 psec/cm. The lower trace of the display is the laser
beat signal (arbitrary amplitude units) from the

0. 6401-u laser heterodyne system. The upper trace is
the grid current at 0.2 A/cm. ] Here the beat frequency
was less than 10 kHz when the current pulse was ini-
tiated. Then it built up to about 100 kHz at the end of
the current pulse and gradually decayed after the cur-
rent was shut off. Such data were taken for various ra-
dial positions, times, and experimental parameters,
yielding the variations of neon 1s; metastable atom den-
sity with those parameters. In order to check the the-
ory, however, it is necessary to relate the observed
metastable atom density distribution to the electron den-
sity distribution. In Sec. V the theoretical metastable
density corresponding to the theoretical electron densi-
ty distributions will be found as a function of radial po-
sition, time, and current; and a means of calculating
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the axial electron density from the measured metastable
density will be derived. These relations will enable
comparison of the experimental results with the results
predicted by the potential theory.

V. VARIATION OF METASTABLE DENSITY WITH RADIUS,
TIME, AND CURRENT

Since the metastable atoms have a long effective life-
time, their thermal motion must be taken into account
in predicting where they will be at the time of observa-
tion. At the low pressures of the present work (less
than 0.01 Torr), the mean free path for collisions be-
tween neutral atoms is much larger than the size of the
vacuum chamber, so collisions of metastable atoms
with other neutral atoms are ignored. Therefore, the
diffusion equation is not valid for this case. Instead, the
motion of the metastable atoms will be described by a
force-free transport equation

8f(xa,tY, t) +vVe. Vf(x, v, t) :S(x’ v, t) - Vdf(x’ v, y)’ (25)

with the initial condition

f(X, v, 0) =0,

where f(X,V, !) is the distribution function of the meta-
stable atoms, v the velocity of the metastable atom, S
the source term for production of metastable atoms, and
v, the effective collision frequency for destruction of the
metastable states by electrons and ions.

The following assumptions are made: (i) Infinitely long
cylinder with azimuthal symmetry; the source Sis a
function of radius and time only. (ii) The collisional
destruction term v, is independent of x and v. (iii) The
ground-state neutral-atom density, n,, is constant and
uniform. (iv) The metastable atom density is initially
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FIG. 13. Metastable density vs current for case of
electron injection into the grid.
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FIG. 14. Radial distribution of metastable density
produced by Ne” ion injection, I;=4.5 A.

zero when the current pulse is turned on at £ =0. (v) The
current pulse, and hence the source S, are constant
from time ¢ =0 until the end of the pulse at f =¢,. (vi)
Free flight by metastable atoms, and all metastable
atoms striking the wall are lost. (vii) A negligible
amount of kinetic energy is imparted to the atom when

it is excited to the 1s, state. Therefore, the metastable
atoms are born with isotropic Maxwellian velocity dis-
tribution characterized by

(B/m)3/2 exp(— Bv?),

where B=my/2kT,, m, is the neon atom mass (kg), T,
the neutral gas temperature (deg), and # Boltzmann’s
constant (Jdeg™).

The resultant metastable atom density is found to be

1/2 ®
nr, t)= (?ﬁ) nof dr' vy, (r")
0

r
i/2
(28rr") ICe=ty 2 n1/2
T ol i
(28r /214 p

2rr!

S 1),
(26)

where I, is a modified Bessel function and v, is defined
below. This equation, except for the term involving v,,
was derived in Ref. 4.

Using this equation, the theoretical radial distribution
of metastable density may be found for any electron den-
sity distribution. In particular, the electron density dis-
tributions derived above will be used here. The cross
section for excitation of the neon 1s, states by fast Ne*
ions is unknown, but reasonable estimations indicate
that this source is negligible. Then the effective colli-
sion frequency for production of metastable atoms may
be written

vs(7) =n, {050, 27

where n, is the electron density (m™), v, the electron
speed (m/sec), and ¢, the cross section for excitation
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of neon 1s, state from ground state by electrons. The
remaining two integrations in Eq. (26) have been per-
formed numerically on a computer, using theoretical
values of #,, yielding a theoretical radial distribution
of metastable atoms for comparison with experimental
data.

The time variation of metastable density is also con~
tained in Eq. (26). Since the experimental current pul-
ses are not truly rectangular, as was assumed, some
error is introduced, but the error is less after the end
of the current pulse, when the metastable atom density
is decaying. It is observed experimentally that both the
grid current and plasma light emission decay rapidly
(in about 5 usec) after the current pulse is shut off, so
for later times the collisional destruction of metastable
atoms by electrons and ions (v,) may be assumed negli-
gible. Using the substitution z=[(#*++'3)/27#']*%p in
Eq. (26), setting v,=0 and r=0, and integrating over z
yields the decay of the axial metastable density after the
current pulse is shut off (¢ >¢,):

10, £) =128 2y

X f: dv’ v(r' ert[8Y 2 /(t - )] —erf(B*/2r'/8)}.  (28)

This equation has been evaluated numerically, using
theoretical electron density values for comparison with
experimental data. It is found that, if the decay curve is
approximated by an exponential function, the character-
istic decay time is about 50 pusec, for the experimental
gas temperature (about 400 °K).

The dependence of metastable density on current can be
obtained from Eq. (26), but a simpler form can be ob-
tained by writing an approximate rate equation for the
change in metastable atom density,

on 1
_a_ti ~ngVs —n5<ud +;;), (29)

where the term #n,/7, represents loss of the metastable
atoms by free flight, and 7, is about 50 psec. The solu-
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FIG. 15. Radial distribution of metastable density
produced by electron injection, I; =25 A,
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FIG. 16. Decay of axial metastable density.
Solid curve—theoretical.

tion of this equation is

ns(t) = ﬁ&yf_—sl) {1 - eXp[— (u,, +Tls)t] } . (30)

The equilibrium value of metastable density is
(31)

At high currents (or high electron densities) v,> 77!, so
that the metastable density reaches a saturation value
defined by

ns=ngvs/ (v, + 5.

Ngar = Vsto/ Vg (32)

Further increases in current do not increase the meta-
stable density beyond the saturation values, because
both v; and v, increase with current, leaving the ratio
about constant. We are now in a position to estimate the
electron density from measured values of metastable
density, ground-state neutral-atom density, and meta-
stable density decay time.

From Eqs. (27), (31), and (32),

1 1 -t
ng= (— +— . (33)
Ngat Tsn0<0esve> Re
This gives a means of determining the value of n, from
the experimentally measured values of metastable den-
sity and ground-state neutral-atom density.

VI. RESULTS

For the case of Ne* jon injection, the axial neon ls; den-
sity as a function of grid current is shown in Fig. 11 for
various pressures at a grid voltage U, =~1.8 kV. The
grid used for these data had an openness of 0.87 and a,
spacing between grid wires of 0. 6 mm. The data were
all taken at the end of a 20-usec current pulse. As the
current is increased, the metastable density increases
almost linearly at first and then gradually saturates at
high currents. From Eq. (33), with » =0.008 Torr, 7,
=50 usec, and {v,v,) =2X10™® cm®sec™, and using
measured values of #,,, and 7, it is found that n,=10"
cm™ at a grid current of /=3.4 A(I;=220 A). The theo-
retical axial electron density for these parameters is
about 0.8x10", arbitrarily assuming A =0.5 and p}=p3
= 0- 5 -
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The effect of varying grid voltage is seen in Fig., 12.
The points for the different voltages appear to lie close
to each other, indicating little change in metastable
density with voltage in this region. An increase in vol-
tage should produce an increase in the average electron
energy, and consequently an increase in {o,;v,), tending
to increase the observed metastable density. On the
other hand, the theoretical electron density varies
roughly as UA,'” % at constant current, so that an increase
in grid voltage would tend to produce a decrease in elec-
tron density, and, thus, in the metastable atom density.
It may be that these two competing factors offset each
other to produce the observed lack of variation with grid
voltage, but this is not fully understood.

For the case of electron injection into the same grid (in-
stead of Ne* ion injection) at 0. 008-Torr neon, the vari-
ation of metastable density with current is shown in

Fig. 13. These data were also taken at the end of a
20-usec current pulse. Here the grid current was con-
trolled by varying the pulsed grid voltage between 0.4
and 1.2 kV. Much higher grid currents were obtained,
but the peak values of metastable density are only about
50% higher. This is a consequence of the dependence of
the plasma density on the square root of the mass of the
injected particle [Eq. (14)].

Measurement of the radial variation of metastable den-
sity produced by Ne* ion injection yielded the data of
Fig. 14. These data were taken at U,=-1.5 kV, at the
end of a 20-usec current pulse in neon at 0.008 Torr.
Since the window aperture on the vacuum chamber is
smaller than the grid diameter, part of the area inside
the grid could not be viewed by the laser beam. The
smooth curve is the theoretical curve computed using
the theoretical electron density for the parameters of
this experiment, arbitrarily assuming x =0.5 and p?
=p2=0.5. Similar data for the case of electron injection
are shown in Fig. 15, at U, =+0.5 kV, at the same
pressure and time (20 usec). The theoretical curve is
computed assuming A =0.5 and pZ=p2=0.3.
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FIG. 17. Variation of axial metastable
density with grid mesh size.
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FIG. 18, Radial variation of plasma light intensity in 0. 004~
Torr deuterium. Upper curve: U,=-2 kV and [; =2.6 A. Lower
curve: U,=—~4 kV and 7;=3.2 A, Smooth curves—theoretical
electron density distribution, assuming A=0.5 and p}=p%=0.5.

The decay of the axial neon 1s; density is shown in Fig.
16, along with the corresponding theoretical curve from
Eg. (28). These data are taken from the oscilloscope
trace of Fig. 10. If the decay curve is approximated by
an exponential line, the decay time 7, is found to be
about 50 usec.

The angular momentum of the injected particles is a
very important parameter, as was shown theoreti-
cally.*? The amount of angular momentum imparted to
the injected particles is controlled somewhat by the
spacing between wires in the wire mesh grid, especial-
ly in the presence of a plasma sheath around the grid
wires. This effect was studied experimentally by using
four different grids, each with a different grid mesh
spacing d, (defined as the open distance between the
edges of adjacent wires). The axial neon 1s, density ap-
pears to be a strong function of the mesh size, with all
other parameters held constant (Fig. 17). In this figure
the curves connect interpolated points of equal circulat-
ing current and pressure. For the upper curve, I,=6 A,
p=0.008 Torr, and for the lower curve, I,=3 A, p
=0.004 Torr. The voltage U, = ~1.8 kV in both cases.

The decrease in density at large mesh spacings is prob-
ably due to an increase in angular momentum imparted
to the injected particles, especially when the grid wire
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spacing is larger than the effective shielding length of
the plasma. From the location of the drop in density,
this shielding length is estimated to be on the order of a
millimeter, which is the Debye length for a plasma with
a density of 10" ¢m™ and a temperature of a few hun-
dred eV (although the present plasma is probably not
Maxwellian).

The radial variation of total light intensity emitted by
the plasma (in arbitrary units) is shown in Fig. 18 for
the case of ion injection in deuterium at 0,004 Torr.
For the lower curve, U,~-4kV, I,~3.2 A and for the
upper curve, U, ~-2XkV, I, ~2.6 A, The smooth curves
are the theoretical electron density distributions, rela-
tive to the density at the center, for the given experi-
mental parameters, assuming A=0.5, p3=p2=0.5, y,
=y,=0, and y,=1. The value of y, in these and previous
curves is taken to be the electron accelerating grid
pulser voitage (about 1 kV) divided by the magnitude of
the effective grid potential U,, which is the potential
difference between the grid and the electron accelerat-
ing grid (Fig. 9).

VII. CONCLUSIONS

At very low current the potential well is shallow and
round, but at higher current it is deep with a broad flat
minimum. The axial plasma density increases almost
linearly with current and also increases with radial
focusing, i.e., decreasing angular momentum.

The laser heterodyne system at 0.6401 and 0. 6328 p
permits determination of the density of neon atoms in
the 1s, metastable state (10°=10'2 cm™) in a plasma as
functions of space, time, and experimental parameters,
with an accuracy of about 10-20%.

The observed saturation of the metastable density at
high currents is attributed to collisional destruction of
the metastable states. The radial distributions of meta-
stable atom density have shapes similar to those pre-
dicted theoretically, but the magnitudes are dependent
upon the unknown values of trapped current and angular
momentum.

The peak experimental electron density is 10 em™ at a
circulating current of I, ~20 A. This value is compatible
with the values predicted theoretically assuming rec-
tangular distributions of total energy and angular mo-
mentum.

The decay of the axial metastable density after the cur-
rent pulse is shut off is consistent with the theoretical
curve based on the above assumptions.

The marked decrease in metastable density at grid mesh
spacings larger than 1 mm is attributed to the presence
of a plasma sheath around the grid wires, which in-
creases the amount of angular momentum imparted to
the injected particles, decreasing the confined density.

The radial variation of emitted light intensity has a
shape similar to the theoretical electron density distri-
bution for the given experimental conditions.

In general, the theoretical predictions based on electron
density distributions from the assumed rectangular dis-
tributions are consistent with the experimental results.

J. Appl. Phys,, Vol. 43, No. 4, April 1972

Downloaded 21 Nov 2004 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



1600 DOLAN

*Work based upon Ph, D thesis submitted by T.J. Dolan,
University of Illinois, Supported by the Air Force Office of
Scientific Research.

tPresent address: Nuclear Engineering Department,
University of Missouri, Rolla, Mo. 65401,

lw,.C. Elmore, J.L. Tuck, and K. M. Watson, Phys. Fluids
2 (No. 3), 239 (1959).

20.A. Lavrent’yev, Magnitnye Lovushki, vypusk 3 (Nankova
Dumka, Kiev, U.S.S.R., 1968), pp. 77—147. [Atomic
Energy Commission Report No. AEC-tr-7002, 1970
(unpublished). ]
3R. L. Hirsch, J. Appl. Phys. 38, 4522 (1967).
4T. Dolan, Ph.D. thesis (University of Illinois, 1970)

et al.

(unpublished) .
5C.W. Barnes, Stanford University Institute for Plasma
Research Report No. 344, 1970 (unpublished).

6D.A. Dunn, Ninth Annual Meeting of the Division of Plasma
Physics of the American Physical Society, Austin, Texas,
1967, Paper No. 3E-11 (unpublished).

TA. Rallston, A First Course in Numerical Analysis
(McGraw-Hill, New York, 1965).
8J.T. Verdeyen, B.E. Cherrington, and M.E. Fein, Appl.
Phys. Letters 2, 360 (1966).
®L.A. Schlie and J.T. Verdeyen, IEEE J. Quantum Electron.
QE-5, 21(1969).

Oxygen-Processed Field Emission Source*
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An oxygen-enhanced thermal-field shaping method has been developed for obtaining high an-
gular confinement of the electron emission from a (100)-oriented tungsten tip. A source is
obtained from which the beam is confined to a half-angle of ~0.15 rad. This strongly-for-
ward-direction beam gives a source that can be used to obtain beams with currents as high
as 5X10% A within an acceptance angle of 5x 103 rad with a total emission curve of only 10
#A. The processed tip is operated at 900°C to give a source with long-term stability and
reliability in a moderate ultrahigh vacuum of ~10*® Torr. Energy spread and flicker noise
are slightly greater than for a “clean” tip operating at room temperature, but remain fa-
vorable for many applications. An interpretation of the shaping of the tip based on field-in-

duced thermal migration is given.

INTRODUCTION

The field emission source with its small size, high cur-
rent density, and narrow energy spread offers major
advantages in electron beam equipment requiring high
brightness and coherence. Such a source has been very
successfully applied to high-resolution scanning trans-
mission electron microscopy by Crewe and co-work-
ers.!™® It is the prototype being used by other workers
in proposed electron optical instrumentation. The future
should see important applications in transmission elec~
tron microscopy,*° electron diffraction, holography,
microrecording, and other electron probe instrumenta-
tion.

Adapting a field emission source to electron optical ap~
plications requires a stable source that can operate in a
moderate ultrahigh vacuum and give an intense beam of
very high brightness with a minimum total emission
current. The aberrations of the beam forming optics
generally set the limit of the angular aperture that can
be accepted from the field emission source without a de-
terioration of its effective brightness and coherence.
The vacuum conditions, physical radius of the tip,
emission current, and temperature of the tip determine
the stability, effective radius, energy spread, and beam
noise of the field emitter.

Swanson and Crouser® have discussed the implication of
angular confinement of the electron beam for obtaining
high-brightness high-coherence sources. This confine-
ment is accomplished by either selectively reducing the
work function of specific lattice planes or by developing
locally sharper regions on the emitter by field-enhanced
buildup or field evaporation of the tip. As they have
shown, the greatest angular beam confinement can be
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obtained using a (100)-oriented tungsten tip.

Reduction of the work function of the (100) lattice plane
on the tungsten tip has been obtained by evaporation of a
zirconium-oxide layer.”® An evaporated monolayer of
beryllium has also been shown to lower the work func-
tion of tungsten, but here the enhanced emission occurs
from the (011) facet.® Deposition of material on the
emitter to lower the work function can produce field
emission sources giving higher current densities and
higher ultimate brightness than clean emitters® with the
possibilities of more stable and less noisy operation at
lower total emission currents. But these advantages
must be paid for by an inconvenient evaporation process
in the electron optical system.

High-temperature field evaporation of a (100)-oriented
emitter would be a reliable method of producing beam
confinement. This method requires a high reverse volt-
age for processing and yields a smaller reduction in
beam voltage than the other methods, making it less
suitable for the electron optical applications in which we
are most interested. Field-induced migration of tung-
sten to reform the shape of a clean tungsten tip has been
investigated by Bettler and Charbonnier. !° Different
combinations of reverse-bias voltage and temperature
promote buildup on the (310), (211), or (100) lattice
planes. Using thermal-field buildup of a (100)-oriented
tungsten tip, Swanson and Crouser® have obtained beams
confined to average emission angles of 0.1—0.3 rad
with beam voltages reduced as much as 50%. Crewe and
co-workers? have used thermal field remolding of (310)-
oriented tips to obtain similar enhancement in their
field emission source for application in the scanning
transmission electron microscope. These tips are op-
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